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1 Introduction

Several groups have introduced methods for the deconvolution of bulk tumor gene expression data. Every
method includes a unique procedure for isolating a reference profile corresponding to each cell type using
sample gene expression data collected from enriched cell lines. For robust deconvolution, it is essential that
these reference profiles – taking the form of marker gene lists or characteristic gene expression vectors – are
determined carefully. Specifically, we are interested in the following properties of these methods:

• Do these training methods extract biological intuition or noise?
• How well do their selected genes or expression vectors differentiate between similar classes?
• How well can these methods differentiate all classes, based on metrics like condition number?
• Do their chosen genes overlap, and are the differences between their training expression vectors or
marker genes biologically significant or noise?

• How unique are genes to individual cell types? How many are shared between multiple types?
We introduce each approach, discuss its theoretical limitations, and examine its output to understand

whether there is motivation for new approaches.

2 Methods for selecting reference profiles

2.1 Marker gene methods

There are three notable methods that produce marker gene lists. First, [1] examined gene expression within
immune cell types and in other tissue to produce a list of genes that are specifically expressed in particular
immune cell types. To determine whether a certain gene g is exemplary of any cell type(s), the authors find the
array with the highest expression level of g and determine which enriched cell type it corresponds to. They
multiply this highest expression level by 0.1625 (chosen arbitrarily) and add the maximum expression level of
g seen in non-immune tissue samples. If this weighted sum is greater than the next highest expression level of
gene g across arrays from other immune cell types, then g is considered characteristic of the cell type in which
it was most highly expressed. Finally, if this gene has higher expression in another immune cell type than this
weighted sum, the gene is also considered to be characteristic of the other cell type.

However, fold change alone is a poor indicator of uniqueness; high expression should not be the only
indicator that a gene corresponds to a particular cell type! A more robust method would consider rare expres-
sion, even at low levels.

[2] pursues the same task with a similar method. To determine whether the expression of gene g is

1



characteristic of cell type t, the authors essentially compute the score:

∆g,t = min
ei∈Xt

(ei(g)) − max
t′∈T −{t}

(meanej∈Xt′ (ej(g))),

where Xi is the set of all arrays of cell type i and e(g) is the expression of g in some array. Then, they keep
all g’s with highest ∆g,t. The authors do not specify their filtering cutoff, unfortunately. The authors finally
add some cell type-specific genes for populations not sampled, again without much detail (the code is not
available).

This filtering mechanism ensures that selected genes are unique to their corresponding cell types, but
would fail if any two types are very similar. In this case, genes whose differential expression has biological
meaning but is small might not pass the filter, whereas genes with seemingly high differential expression – as
may be found in the noise from low sample sizes – may pass.

Finally, though [3] attempts to estimate tumor purity, which is the absolute fraction of stromal and
immune cells in a tumor sample, instead of the relative abundances of specific immune infiltrate cell types, the
method also relies on identifying immune signature genes from gene expression in enriched samples and thus
deserves investigation. The authors simply divided samples into extremely low and extremely high immune
cell infiltration groups (using leukocyte methylation signature scores that are given in many TCGA datasets),
removing any samples with medium immune cell infiltration. They computed Significance Analysis of Mi-
croarray (SAM) scores on the differential expression of genes between the high-and low-infiltration groups
[4]. They selected genes that were significantly differentially expressed to form a gene list.

SAM is a straightforward, well-known, and statistically soundmethod for finding genes that are differen-
tially expressed between two classes. Moreover, the SAM technique can be applied to multi-class situations to
determine genes that are significantly differentially expressed in one combination of cell types versus another.
I believe SAM would form more robust gene lists in comparison to previous methods that are based solely on
fold change.

2.1.1 Analysis

Our first measure of whether these marker gene extraction methods are successful is whether known immune
pathways are enriched in the gene list. For example, are the genes that these methods believe to be associated
with T cells part of the T cell receptor signaling pathway, or are these methods pulling out noise?

The two marker gene lists, which we call IRIS [1] and Bindea [2], do not have much agreement on B
cells or T cells; on NK cells, there are no intersecting genes at all. We run gene ontology enrichment analysis
on the genes they have in common and on the genes unique to each list to see which T cell pathways are
found and where. The resulting significant (p < .001) GO terms are contained in the tables below. Though
the genes are different, they belong to the same pathways. The IRIS list contains much more noise than the
Bindea list. This suggests that the method of ??? is more effective at extracting the unique properties of each
immune cell subtype.

GO terms in intersection of T cell IRIS and Bindea marker gene lists:

1. T cell receptor signaling pathway

2. antigen receptor-mediated signaling pathway

3. T cell costimulation

4. lymphocyte costimulation

5. immune response-activating cell surface recep-
tor signaling pathway

6. T cell activation

7. T cell aggregation

8. lymphocyte aggregation

9. leukocyte aggregation

10. T cell selection

11. leukocyte cell-cell adhesion

12. immune response-activating signal transduction

13. positive regulation of T cell activation
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14. homotypic cell-cell adhesion
15. positive regulation of homotypic cell-cell adhe-

sion
16. positive regulation of leukocyte cell-cell adhe-

sion
17. immune response-regulating cell surface recep-

tor signaling pathway
18. activation of immune response
19. positive regulation of cell-cell adhesion
20. lymphocyte activation
21. positive regulation of lymphocyte activation
22. positive regulation of leukocyte activation
23. immune response-regulating signaling pathway
24. positive regulation of immune response
25. T cell differentiation in thymus
26. thymocyte aggregation
27. positive regulation of cell activation
28. regulation of T cell activation
29. regulation of leukocyte cell-cell adhesion
30. leukocyte activation
31. regulation of homotypic cell-cell adhesion
32. single organismal cell-cell adhesion
33. single organism cell adhesion
34. cell adhesion

35. biological adhesion

36. positive regulation of cell adhesion

37. regulation of lymphocyte activation

38. regulation of cell-cell adhesion

39. cell-cell adhesion

40. positive regulation of immune system process

41. regulation of leukocyte activation

42. cell activation

43. regulation of cell activation

44. regulation of immune response

45. thymic T cell selection

46. positive T cell selection

47. positive regulation of calcium-mediated signal-
ing

48. T cell differentiation

49. regulation of cell adhesion

50. regulation of calcium-mediated signaling

51. regulation of immune system process

52. immune system process

53. lymphocyte differentiation

54. immune response

55. olfactory bulb axon guidance

56. positive regulation of response to stimulus

GO terms of T cell genes in IRIS but not in Bindea:

1. cell division

2. nuclear division

3. organelle fission

4. cell cycle process

5. mitotic nuclear division

6. mitotic cell cycle process

7. mitotic cell cycle

8. cell cycle

9. cell cycle checkpoint

10. mitotic cell cycle checkpoint

11. G2/M transition of mitotic cell cycle

12. cell cycle G2/M phase transition

13. anaphase-promoting complex-dependent pro-
teasomal ubiquitin-dependent protein catabolic
process

14. T cell activation

15. T cell aggregation

16. lymphocyte aggregation

17. leukocyte aggregation

18. regulation of cell cycle

19. spindle organization

20. mitotic cell cycle phase transition

21. leukocyte cell-cell adhesion
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22. regulation of mitotic cell cycle
23. cell cycle phase transition
24. negative regulation of mitotic cell cycle
25. regulation of spindle organization
26. homotypic cell-cell adhesion
27. mitotic spindle organization
28. somatic diversification of T cell receptor genes
29. somatic recombination of T cell receptor gene

segments
30. T cell receptor V(D)J recombination
31. spindle stabilization
32. spindle assembly involved in meiosis
33. lymphocyte activation
34. positive regulation of ubiquitin-protein trans-

ferase activity
35. regulation of ubiquitin homeostasis
36. free ubiquitin chain polymerization
37. positive regulation of ligase activity
38. meiotic cell cycle
39. mitotic nuclear envelope disassembly
40. membrane disassembly
41. nuclear envelope disassembly
42. forebrain neuroblast division
43. leukocyte activation
44. sister chromatid segregation
45. response to insecticide
46. activation of anaphase-promoting complex ac-

tivity
47. single organismal cell-cell adhesion
48. neural precursor cell proliferation
49. regulation of cell cycle process
50. cell proliferation
51. meiotic spindle organization
52. cell activation
53. regulation of ligase activity
54. regulation of ubiquitin-protein transferase activ-

ity
55. histone-serine phosphorylation

56. neuronal stem cell division
57. neuroblast division
58. single organism cell adhesion
59. microtubule cytoskeleton organization
60. V(D)J recombination
61. immune system development
62. meiotic nuclear division
63. mitotic G2 DNA damage checkpoint
64. interleukin-5 production
65. regulation of interleukin-5 production
66. meiotic cell cycle process
67. DNA integrity checkpoint
68. negative regulation of mitotic cell cycle phase

transition
69. nuclear envelope organization
70. positive regulation of ubiquitin-protein ligase ac-

tivity involved in regulation of mitotic cell cycle
transition

71. positive regulation of proteolysis involved in cel-
lular protein catabolic process

72. regeneration
73. oogenesis
74. spindle assembly
75. organ regeneration
76. T cell costimulation
77. positive regulation of protein ubiquitination
78. nuclear chromosome segregation
79. lymphocyte costimulation
80. cell-cell adhesion
81. centrosome localization
82. regulation of mitotic spindle organization
83. negative regulation of cell cycle phase transition
84. positive regulation of cellular protein catabolic

process
85. negative regulation of cell cycle
86. positive regulation of protein modification by

small protein conjugation or removal
87. negative regulation of cell division
88. single-organism organelle organization
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GO terms of T cell genes in Bindea but not in IRIS:

1. T cell receptor signaling pathway

2. antigen receptor-mediated signaling pathway

3. positive regulation of immune system process

4. regulation of immune system process

5. positive regulation of leukocyte activation

6. regulation of immune response

7. positive regulation of cell activation

8. regulation of T cell activation

9. regulation of leukocyte cell-cell adhesion

10. regulation of homotypic cell-cell adhesion

11. regulation of cell adhesion

12. immune response-activating cell surface recep-
tor signaling pathway

13. positive regulation of immune response

14. positive regulation of cell adhesion

15. regulation of lymphocyte activation

16. regulation of cell-cell adhesion

17. regulation of leukocyte activation

18. T cell activation

19. T cell aggregation

20. lymphocyte aggregation

21. leukocyte aggregation

22. cell adhesion

23. biological adhesion

24. regulation of cell activation

25. positive regulation of T cell activation

26. positive regulation of homotypic cell-cell adhe-
sion

27. positive regulation of leukocyte cell-cell adhe-
sion

28. leukocyte cell-cell adhesion

29. immune response-activating signal transduction

30. homotypic cell-cell adhesion

31. immune response-regulating cell surface recep-
tor signaling pathway

32. activation of immune response

33. positive regulation of cell-cell adhesion

34. immune response

35. positive regulation of lymphocyte activation

36. T cell costimulation

37. lymphocyte costimulation

38. immune system process

39. lymphocyte activation

40. immune response-regulating signaling pathway

41. positive regulation of interleukin-2 biosynthetic
process

42. leukocyte activation

43. single organismal cell-cell adhesion

44. single organism cell adhesion

45. regulation of interleukin-2 biosynthetic process

46. interleukin-2 biosynthetic process

47. cell-cell adhesion

48. cell activation

49. regulation of defense response to virus by virus

50. positive regulation of interleukin-2 production

51. T cell differentiation

52. positive regulation of response to stimulus

53. regulation of interleukin-2 production

54. positive regulation of alpha-beta T cell activa-
tion

55. interleukin-2 production

56. positive regulation of cytokine biosynthetic pro-
cess

57. positive regulation of myeloid dendritic cell acti-
vation

58. lymphocyte differentiation

59. positive regulation of adaptive immune re-
sponse based on somatic recombination of im-
mune receptors built from immunoglobulin su-
perfamily domains

60. regulation of alpha-beta T cell activation

61. positive regulation of lymphocyte mediated im-
munity
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62. Fc-epsilon receptor signaling pathway
63. positive regulation of signal transduction

64. positive regulation of adaptive immune re-
sponse

2.2 Expression barcodes

Storing representative gene expression signatures, as opposed to just marker genes, is key to more robust
predictions of immune infiltrate cell type abundances. These distinctive transcriptional profiles are often called
unique expression “barcodes” (seemingly named for the heatmaps commonly used to visualize microarray
data). We now examine two methods that extract representative expression profiles.

[5] introduces the following procedure to select barcodes. For each expressed gene, the authors find
the two cell types with highest expression of this gene (perhaps in terms of mean expression across all samples
from each cell type, although the details are not given). If the gene is differentially expressed within a 95%
fold change confidence interval between those cell types, the gene is flagged as a potential marker for the cell
type with higher expression. This approach would clearly fail for very similar subtypes, and may only pull out
noise because of low sample sizes. So the authors also compare the cell types with highest and third-highest
expression of this gene in case it is hard to tell between the top two groups. They progressively refine their
basis matrix with an increasing number of top genes, and report that they minimize the condition number of
their matrix with an intermediate number of included genes (360 genes).

The authors note that their method produces a well-conditioned matrix. This is an important considera-
tion because the condition number, defined as the ratio of the largest to smallest singular values in the singular
value decomposition of the basis matrix, estimates how imprecise solutions to linear systems with this matrix
are, and thus is a good proxy for the accuracy of deconvolution under the well-justified biological assumption
of linearity [6]. The smaller the condition number, the better conditioned the basis matrix is, meaning the cell
types are more distinct. However, more strict statistical testing with a controlled false discovery rate is desired.

[7] provides this desired statistical rigor. Like the previous method, this one also iteratively deletes
irrelevant genes. The authors find significantly differentially expressed genes between all populations using
two-sided unequal variance t-tests, with a (fairly loose) false discovery rate threshold of q < .3 and with log
fold change greater than 2.0. The number of selected genes per cell type is reduced from at most the first 150
towards 50 final selected genes in search of the best-conditioned matrix (minimum condition number).

Here is an example of the output of these methods. [5] provides raw samples from several populations:
T cells, two lines of B cells, and monocytes. Figure 1 and 2 are correlation matrices of the pure samples
and of processed basis matrices (via [7] codebase), respectively. Note the poor differentiation in the raw data
(especially note the scale), whereas differentiation is much easier in the processed matrix.

2.2.1 Analysis

We want to characterize how well expression barcode methods distinguish similar cell types. [5] does not
provide code to regenerate their full basis matrix from many samples. However, I was able to reproduce the
basis matrix from [7] using their tools and supplied input data, albeit with less filtering: the authors postpro-
cessed their signature matrix to remove some junk genes using annotations from cancer cell lines. Though my
basis matrix thus included more genes, I obtained a very similar condition number to their matrix (which they
call LM22), and the genes in common all had almost exactly the same expressions throughout. This suggest
that the postprocessing that was poorly described and that I was unable to run did not significantly refine the
matrix.

I performed hierarchical clustering and computed pairwise Pearson correlations between cell type-
specific profiles in the signature matrices from [5] and [7]. The pairwise Pearson correlation of the LM22
matrix [7] showed nice differentiation between cell types, and biologically-related cell types were highly corre-
lated (Figure 3). In contrast, the pairwise Pearson correlations from the matrix in [5], hereafter called Abbas,
showed very poor differentiation among several B cell types (Figure 4). I also computed pairwise Pearson
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Figure 1: Pairwise correlation in raw data from [5].
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Figure 2: Pairwise correlation in basis matrix created from raw data of [5].
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correlations from the combined matrices (Figure 5). Different methods with different datasets still produce
nice expected correlations, although are also several unexpected inter-matrix correlations.

Figure 3: Pairwise Pearson correlation in LM22 [7].

Hierarchical clustering of genes and cell types in LM22 generally recovers biological similarities between
cell types (Figure 6). There is one exception: gamma delta T cells. However, this cell type has been flagged as
problematic and may be ignored [8].

Since LM22 has nice differentiation between cell types, it is interesting to examine the most similar cell
types in this matrix. The Pearson correlations and the hierarchical clustering reveal that the following classes
in LM22 are most similar:

• B cells memory, naive
• CD4 T cells naive, memory resting

When one of each pair of similar cell types is removed, the condition number decreases from 11.38 to
9.30, meaning the resulting matrix is considerably better at deconvolving the more distinct set of cell types.

3 Future directions

In total, these papers have 390 microarrays samples. I downloaded and normalized all this array data. We
can construct a much richer set of expression profiles from this expanded dataset. In fact, the sample size
could potentially allow us to model variance and not just use mean expression profiles, which could be critical
for deconvolving the immune contexture of tumors, in which immune cells may have differing activations or
other properties depending on the state of the tumor.
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Figure 4: Pairwise correlation in Abbas [5].
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Figure 5: Pairwise pearson correlation in combination of LM22 and Abbas basis matrices, as well as with raw
data from [5].
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Figure 6: LM22 hierarchical clustering
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Since RNAseq is popular today for tumor sequencing, it is desirable to obtain enriched immune cell line
RNAseq data and produce a new basis matrix. However, online discussion suggests that RNAseq does not
support the independence assumptions in microarray analysis: https://www.biostars.org/p/160961/. This
context may require different reference profile expression methods.
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