
Sensi&vity	
  on	
  downsampled	
  data	
  from	
  a	
  single	
  tumor/normal	
  pair	
  

Overview 
v  Tuning a new somatic variant caller is difficult due to lack of 

readily available ground truth data. Most benchmarks use 
synthetic data containing known mutations or compare to an 
ensemble of existing callers. 
 

v  Some TCGA submissions include variants validated using 
targeted sequencing. These submissions enable an assessment 
of the sensitivity of a mutation caller on real data. 
 

v  Since the validated variants must first have been identified by 
a standard caller, they are subject to ascertainment bias. 
Therefore, TCGA validated variants cannot rigorously be 
used to compare callers or measure the absolute sensitivity of 
a caller, but they can find variants missed by a particular 
caller to diagnose errors. 
 

v  Using a set of 24,629 validated calls across 16 TCGA tumor/
normal pairs, we evaluated the performance of two popular 
mutation callers, Strelka and Mutect, as well as an 
experimental caller we are developing called Guacamole. 
 

v  We intend to extend this preliminary work into a collection of 
curated calls to the aid the development of new variant 
callers. 

	
  
Previous	
  Work 
The ICGC-TCGA DREAM Mutation Calling challenge is a 
competition to accurately call somatic variants. The first five 
phases have used synthetic data. The final phase will involve 10 
patient datasets and validation of prioritized calls, but is not yet 
available. 
 
(Kim 2013) use validation data from TCGA to assess the 
performance of many callers, but their analysis cannot be readily 
reproduced as sample identifiers are not specified. 
 
Other work has used mice (Löwer 2012), mixtures of normal 
cells to simulate tumor samples (Xu 2014), assessed only 
concordance with other callers (Roberts 2013), or done their own 
sequencing and validation but have not released raw data (Alito 
2014, Goode 2013). 
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Illumina (Targeted) 
36,863 calls 
264 samples 

Ion PGM 
1,098 calls 
357 samples 

Roche 454 
800 calls 
189 samples 
 

Not Tested 
1,259,253 calls 
5,532 samples 

Validated 
38,786 calls 
727 samples 
 

SNV 
33,676 calls 
698 samples 

Deletion 
3,688 calls 
202 samples 

Insertion 
1,422 calls 
179 samples 

Validated Variant Type 

Validation Method 

Samples with the most validated variants 
Calls generated from Illumina sequencing and validated with 
targeted Illumina. 
Tumor Barcode Disease Type Calls 

Validated / Total 
TCGA-CA-6717-01A-11D-1835-10 COAD WGS 4289 / 7007 
TCGA-AZ-4315-01A-01D-1408-10 COAD WXS 2798 / 6086 
TCGA-AA-3510-01A-01D-1408-10 COAD WXS 1549 / 2963 

Summary of Illumina 
HiSeq and MiSeq calls 
from the TCGA public 
MAF files. 

Samples with the most validated variants from an 
orthogonal platform 
Calls generated from Illumina sequencing and validated with 
targeted Ion PGM or 454. 
Tumor Barcode Disease Type Calls 

Validated / Total 
TCGA-D5-6931-01A-11D-1924-10 COAD WXS 21 / 320 
TCGA-CA-6716-01A-11D-1835-10 COAD WXS 13 / 208 
TCGA-CK-4950-01A-01D-1719-10 COAD WXS 13 / 436 
TCGA-A3-3308-01A-01D-0966-08 KIRC WXS 13 / 90 

All Variants 
Insertions and Deletions (Strelka) 

Fraction of reads sampled from TCGA-AD-6964-01A-11D-1924-10 

Validated Variants Called Total Variants Called 

Variant call counts for a single tumor/normal pair, in which the tumor reads have been randomly downsampled across a range of sampling 
fractions. Many of the validated variants are still called at lower depths, suggesting the validated variants are biased toward being the easiest to 
identify variants. 

Three callers were evaluated for sensitivity on 16 TCGA tumor/normal pairs.  Mutect and Strelka consistently found most of the validated SNVs. 
Strelka, the only caller supporting indels, performed similarly on insertions and deletions. The validated variants missed by our caller (Guacamole) 
can be used to improve it in a future version. 
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