Python Libraries for
Deep Learning with
Sequences

Alex Rubinsteyn
PyData NYC 2015

HammerlLab @ Mount Sinai

http://www.hammerlab.org/research/

http://www.hammerlab.org/research/

Not biologists!

Most lab members have a background in
Computer Science and/or Mathematics:

» Distributed data management
* Machine learning & statistics
* Programming languages
 Data visualization

Motivation: Cancer Immunology
meets Machine Learning

cytotoxic T cell

- =
. & . s N

N .
N
% ‘) Rt S RN
. ~ . v -
! 44 . e
, J' " t
. RS
T
‘ » ’ -
\’_/
: o~
~

T-cells recognize specific amino acid sequences
presented on the surface of tumor cells.

Motivation: Cancer Immunology
meets Machine Learning

(): Which mutated protein fragments will cause a
targeted immune response against tumor cells?

e Protein fragments must be presented on the cell surface to
be recognized by the immune system.

e Immunologists have collected ~300k examples of protein
fragment “affinity” for the proteins that present them to
the immune system.

e Build a model from protein fragment sequence to binding
affinity! Amino acid sequence -> [0,1]

Learning with fixed length
sequences 1s easy!

e 1-of-k encoding turns
sequence of n characters
into k*n length binary
vector

e Vector embedding (e.g.
word2vec) can learn better
representations from the
data directly.

omer Peptide Sequence
(“SIINFKELL”)

g

Embedding
(0x20 -> 9x64)

g

Dense RelLU
(9x64 -> 400)

|

25% Dropout

U

Sigmoid Output

Varying length
sequences are hard!

e (Common approach) bag of words / n-grams:
Doesn’t work when order actually matters!

e “Artisanal” features & sliding windows: how to
combine varying numbers of windows?

e Structured prediction (e.g. CRFs): work for
specific tasks BUT non-compositional (hard to
combine with NNs) & inference is often slow

Simple RNNs

e Neural network with two kinds of inputs: input from
current time step (X:) & previous output (hi-;)

e Train using “Back-propagation through
time” (BPTT)

e Works for short time-scale dependencies between
inputs and outputs

O & ®
r t t 1 1

b b &

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Simple RNNs

e ..but what happens across many time steps?

h b @ @ ®
Pt 1 |
A A

—» A —» A > —> —

6 & <1> L

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

e Hard to track relationship between inputs & outputs

e “Vanishing” & “Exploding” gradients

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

e Holds internal s 4

state (ct) AW l / AW l N

dCross Input Gate 7:1‘, Output Gate or
timesteps

e Gated update N
of state based wt—>@ -3
on input (xt), S
previous
output (ht-),

and previous /\

state (Ct—1) Tt

Pht

Generating Sequences With Recurrent Neural Networks (Graves 2012)

LSTM Equations

it = 0 (WaiTs + Whihi—1 + Weice—1 + b;)

ft =0 (Wyrxe + Whihi—1 + Wepci—1 + by)
¢t = ftce—1 + ip tanh (Weezs + Whehi—1 + be)
ot = 0 (WioTt + Whoht—1 + Weoct + bo)

h: = o tanh(cy)

Generating Sequences With Recurrent Neural Networks (Graves 2012)

Example: Writing
Fairy Tales

Source Data

e Grimm’s Fairy Tales from Project Gutenberg
e ~500k characters

e 69 distinct characters

“A certain king had a beautiful garden, and in the garden stood a tree
which bore golden apples. These apples were always counted, and about
the time when they began to grow ripe it was found that every night one
of them was gone. The king became very angry at this, and ordered the

gardener to keep watch all night under the tree.”

Character-Level
Language Modeling

Task: Predict the next character from the previous
k characters.

Input: Sequence of binary vectors representing
characters.

Output: Probability distribution over characters.

Loss Function: Probabilities of all wrong
characters.

The notion "probability of a sentence” is an entirely useless one, under any known

interpretation of this term. (Chomsky, 1969)

Keras implementation

model = Sequential()
for i, layer size in enumerate(layer sizes):
last 1stm layer = (i + 1 == len(layer sizes))
last layer needs to only return its last activation
kwargs = {"return_sequences": not last lstm layer}
need to tell Keras the input shape for first layer
if 1 ==
kwargs["input_shape"] = (maxlen, n_chars)
model.add(LSTM(layer size, **kwargs))
model.add(Dropout(dropout prob))
model.add(Dense(n_chars))
model.add(Activation('softmax'))
optimizer = RMSprop(lr=learning rate, clipnorm=max_gradient_ norm)
model.compile(loss="categorical crossentropy', optimizer=optimizer)

Lasagne implementation

character_input_layer = InputlLayer(shape=(batch_size, maxlen, n_chars))

layers = [character_input_layer]
for layer_size in layer_sizes:
1stn_layer = LSTMLayer(
incoming=layers[-1],
nun_units=layer_size,
nonlinearity=tanh,
hid_init=Glorot(Uniforna),
forgetgate=Gate(b=Constant(1.)))
layers.append(lstm_layer)
if dropout_prob > 8:

dropout_layer = DropoutLayer(lstm_layer, p=dropout_pgrob)

layers.append(dropout_layer)

eacn Lo lavyer returns a sequence o OUTPpUTS, and we ¢

¥ the last output to predict the next charac

- > LC >0 wWE —
¥ a2 SlicelLayer To extract that last ocutput vector
slice_layer = Slicelayer(layers[-1], indices=-1, axis=1)
¥ output 1is a Softmax distribution over charaters
cutput_layer = Denselayer(

slice_layer,

nun_units=n_chars,

nonlinearity=socftmax)
¥ we get a predicted vector of probabllities for each tin

¥ use deterministic=False to activate Dropout.

¥ S1icing OuUg e UJTPUT vecCcto Since we only wa

¥ probablilities coning he l1las inestep

¥ training outpu aining outpu 1

¥ Create a symbolic variable for (minibatch, n chars) bir
¥ encoding of desired outputs

target_probabilities = T.matrix({'target_probabilities')

¥ train network to ninimize cross-entroov

cost = categorical_crossentropy(target_probabilities, training_output).mean()

¥ retrieve all paramneters from the netwo

all _parans = get_all parans(output_layer, trainable=True)
gradients = theano.grad(cost, all_params)

gradients = |

norn_constraint(
E»
MAX_GRADIENT_NCRM,

take nornm along all axes except for the @

" (8 ‘,.‘,.',;1'._"'._‘:-
norna_axes=tuple(range(l, g.ndim + 1)))

for g in gradients

4

T cing RMSpron t latern s updates for e
UsSing Sprop To dets ine upgates ¥« each parametel

updates = rasprop(gradients, all_params, learning_rate=LEARNING_RATE)

£ar 1 nd rornint

¥ Theano functions o training and computing cost

train_fn = theano.function(

[character_input_layer.input_var, target_probabilities],

cost,
updates=updates)

cost_fn = theano.function(

[character_input_layer.input_var, target_probabilities],

take the mean since the cost 1s otherwise computed per
sanple
cost)
¥ The cruclial difference here 1s that we do a deterministic
¥ through the network, disabling Dropout layers.

Torwara pass

deterninistic_output = get_output(output_layer, deterministic=True)

predict_fn = theano.function(
[character_input_layer.input_var],
deterninistic_ocutput)

Chainer imp

¥ first create weights and model layers, the actual semantics of

how we use these weights will be defined later

rmodel = chaliner.FunctionSet(
11_x=F.Linear(n_chars, 4 * hiddenl_size),
11_h=F.Linear(hiddenl_size, 4 * hiddenl_size),
12_x=F.Linear(hiddenl_size, 4 * hidden2_size),
12_h=F.Linear(hiddenl_size, 4 * hidden2_size),

output=F.Linear(hidden2_size, n_chars)

for paran in model.paraneters:
paran[:] = np.randon.unifora(-8.1, 8.1, paran.shape)
if cuda.available:
cuda.get_device(@).use()
nmodel.to_gpu()

now that we've transferred the model weights to the GPU,

¥ set up an optimizer that we're going to use to train the model
cptinizer = RMSprog(lr=LEARNING_RATE)

cptinizer.setup(model)

the actual input-to-output mapping is defined in
via its "Define-By-Run®
values through successive transformations
def forward_one_step(X_batch, state, train=True):
x = chalper.Variable(X_batch, volatile=not train)
old_hiddenl = state[“hiddenl")
x_to_h = model.11_x(x)
h_to_h = model.l1_h(old_hiddenl)
hiddeni_input = x_to_h + h_to_h

Chainer

nodel of just passing intermediate

old_celll = state["celll")
celll, hiddenl = F.lstm{old_celll, hiddenl_input)
hiddeni_dropout = F.dropout{hiddenl, dropout_prob, train=train)

hiddenZ_old = state[“hidden2")
hiddenZ_input = model.l12 x{hiddenl_dropout) + =model.l2_h(hidden2_old)
cell2 old = state["cell2")
cell2, hidden2 = F.lstn{cell2_old, hidden2_input)
hiddenZ_dropout = F.dropout{hidden2, dropout_prob, train=train)
logits = model.cutput(hidden2_dropout)
probs = F.softmax(logits)
state = {

‘celll': celll,

"hiddenl': hiddeni,

‘cell2': cell2,

"hidden2': hiddenz,
}

return state, probs

£

def

def

lementation

”ed‘ct _batch(X_batch, train=True):

In initation of the stateless LSTM we made with Keras
ignoring state propagation across forward calls and instead
only allowing the contents of each short sequence samgle to
affect the model's output.

batch_size, maxlen = X_batch.shape[:2)
state = make_initial_state(batch_size=batch_size, train=train)
for j in range(maxlen):

state, probs = forward_one_step(
X_batecn(:, 3, :1,
state,

train=train)
return probs

cost_fn{X, y, train=False):

accun_loss = chainer.Variable(xp.zeros((),

for L in range(@, len(y), batch_size):
X_batch = X[i:1 + batch_size)
y_batch = y[i:1 + batch_size)
probs = predict_batch(X_batch, train=False)
y_batch_var = chainer.Variable(y_batch, volatile=True)
loss = F.softmax_cross_entropy(probs, y_batch_var)
accun_loss += loss

return cuda.to_cpu(accun_loss) / len(y)

dtype=np.float3z))

train_fn{X, y, batch_size=BATCH_SIZE,
if shuffle:
indices = np.arange{len(y))
np.random,.shuffle(indices)
X, ¥ = X[indices], y[indices)
optinizer.zero_grads()
for L in range(@, len(y), batch_size):
X_batch = X[i:1 + batch_size, :)
y_batch = y[i:1 + batch_size)
probs = predict_batch(X_batch, train=True)
y_batch_var = chainer.Variable(y_batch, volatile=False)
loss = F.softmax_cross_entropy(probs, y_batch_var)
¥ compute gradients
loss.backward()
¥ rescale gradients to not exceed norn threshold
optinizer.clip_grads{MAX_GRADIENT_NORM)
¥ apply RMSpop weight update to weights in
optimizer.update()

shuffle=True):

the function set

Output, epoch #1

“'T the kas would ontile were her werl now I
heast of the sonenund lest enct her ouk that
pistered the with of fean, wile that the fing
wared me in the parled to the bees if the sther
gound.' Then whan shund again, the seeps of
the wame went on the coot; be he as deated
sime out of the the, and boked yither”

Output, epoch #2

“The bettle seet resent throw in his sell and
seard ney woor and see betore.' 'qoat rawed,
with one lyor wand her, he lettle she sauded
out of one to the shore sanded off the would be
wonderth put her that she once sen which
neved becound, and the toot and saw a
loodser, and said her one will be soon arl
dead.' But I will go and kered to the bear

reppined.”

Output, epoch #10

“So the old woman was clacked upon his
head, and mise could not run off and
berought to courterus, for the fisherman
was that the young grey back, and the
cat was before to the church, and the
srandmasters were off back.”

Output, epoch #15

“The king came and said, 'Give me a
moon.' 'Ah,' said the wolf, 'the king was
so well to go out to him her way in the
sea, for a wood would have nothing to
wait all yourself. "That was bring the
church of the chamber,' said the old
woman, 'and take some his horse."”

Output, epoch #40

“The bear was standing by the side of the
stream, and said to him, '"What a way
into the forest the golden house if you
have been the world when they shall
have sent me forth, and I will soon find
you down in an earth.' The man was
going on the house, and sent the fire,
and she said, 'If you have a fat good
companion for the princess."”

Other RNN Tasks

Machine Translation

Awesome sauce
Y1 Y,
e @
hl] h2 Smm— h3 — —> ‘ > .
O 0 ® ® ®
oY e w |e ® ®
— > = e —
O > @ e @)
O O O
\— Ne— N —

X r X, X3

[cohoo] [cd.okoo] [of'oo]

Source: http://cs224d.stanford.edu/lectures/CS224d-Lecture8.pdf

http://cs224d.stanford.edu/lectures/CS224d-Lecture8.pdf

1.31 dog
0.31 plays
0.45 catch
-0.02 with
0.25 white
1.62 ball
-0.10 near
-0.07 wooden
0.22 fence

Captionin

0.26 man

0.31 playing
1.51 accordion
-0.07 among
-0.08 in

0.42 public
0.30 area

PREVIOUS ££78

Source: http://cs.stanford.edu/people/karpathy/deepimagesent/

1.12 woman
-0.28 in

1.23 white
1.45 dress
0.06 standing
-0.13 with
3.58 tennis
1.81 racket
0.06 two
0.05 people
-0.14 in
0.30 green
-0.09 behind
-0.14 her

http://cs.stanford.edu/people/karpathy/deepimagesent/

Computational Biology

e Predicting mRNA splicing from DNA sequence

e Predicting at which residues a protein will be cut by the
proteasome (or other proteases)

e Predicting binding of long peptides to Class 11
MHC molecules for immune recognition by
Helper T-cells.

Thanks!

